
Using the Cluster – Introduction
At RIT’s Research Computing, we use a piece of software called to manage the many users we have contending for access to our SLURM
limited physical resources. SLURM has a number of commands you may be unfamiliar with; the purpose of this document is to introduce to their
basic usage.

Prerequisites:

Getting a Research Computing Account – http://apply.rc.rit.edu
Connecting to Research Computing Systems with SSH
File Management - Getting your files to and from RC systems
Using the bash shell and running software

: Note You might also want to check out these screencasts of the workshops we ran introducing how to use tropos: https://wiki.rit.edu/display/rc
/Computing

Checking the status of the cluster

Once you’ve logged into the cluster headnode, , you can check the status of the cluster by issuing the command:ion.rc.rit.edu squeue

[abc1234@ion ~ []]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
65483 work test-3-5 abc1234 PD 0:00 1 (Priority)
65484 work test-4-1 abc1234 PD 0:00 1 (Priority)
65485 work test-4-2 abc1234 PD 0:00 1 (Priority)
65486 work test-4-3 abc1234 PD 0:00 1 (Priority)
65487 work test-4-4 abc1234 PD 0:00 1 (Priority)
65488 work test-4-5 abc1234 PD 0:00 1 (Priority)
65489 work test-5-1 abc1234 PD 0:00 1 (Priority)
65490 work test-5-2 abc1234 PD 0:00 1 (Priority)
65491 work test-5-3 abc1234 PD 0:00 1 (Priority)
65492 work test-5-4 abc1234 PD 0:00 1 (Priority)
65493 work test-5-5 abc1234 PD 0:00 1 (Priority)
65481 work test-3-3 abc1234 PD 0:00 1 (Resources)
65482 work test-3-4 abc1234 PD 0:00 1 (Priority)
65346 work test abc1234 PD 0:00 1 (Priority)
63992 work ON-IC-0_ xyz5678 PD 0:00 1 (Priority)
65469 work test-1-1 abc1234 R 0:10 1 h1
65470 work test-1-2 abc1234 R 0:10 1 h1
65471 work test-1-3 abc1234 R 0:10 1 h1
65472 work test-1-4 abc1234 R 0:10 1 h1
65473 work test-1-5 abc1234 R 0:10 1 h2
65474 work test-2-1 abc1234 R 0:10 1 h2
65475 work test-2-2 abc1234 R 0:10 1 h2
65476 work test-2-3 abc1234 R 0:10 1 h2
65477 work test-2-4 abc1234 R 0:10 1 h3
65478 work test-2-5 abc1234 R 0:10 1 h3
65479 work test-3-1 abc1234 R 0:10 1 h3
65480 work test-3-2 abc1234 R 0:10 1 h3

Here you can see that there are 27 jobs currently known by the SLURM scheduler.

The 12 jobs that have an in the column are currently in the running state. They are executing on three different remote nodes, , , and R ST h1 h2 h3
. The rest of the jobs have a in the column meaning they are in a pending state. They are pending for different reasons – some do not PD ST
have sufficient priority to be running yet whereas another is marked as requesting resources that are not yet available.

The column (perhaps obviously) indicates what user owns the submitted job. Here the user owns most of the submitted jobs; USER abc1234
another user owns one other that is waiting for access.xyz5678

The column indicates how long the jobs have been running.TIME

Note: The command is one command of many provided by the SLURM scheduler. You can break it down phonetically as . All squeue s-queue
SLURM commands begin with an (for SLURM). The part means that this command will display the queue of jobs waiting for or currently s queue
consuming resources provisioned by the scheduler.

So the cluster at this point looks ‘pretty full’, meaning that there are jobs waiting in the queue to get access; the computing resources look fully
occupied.

You may have noticed that there was a column in the output and that all the jobs listed were marked as under the PARTITION squeue work
partition.

We’ll use another command, the command, to get another look at the cluster’s status and find out more about these partitions:sinfo

https://computing.llnl.gov/linux/slurm/
http://apply.rc.rit.edu
https://wiki.rit.edu/display/rc/Computing
https://wiki.rit.edu/display/rc/Computing

[abc1234@ion ~ []]$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug up 10:0 1 idle h[8]
work up 14-00:00:0 7 alloc h[1-7]

premium up 14-00:00:0 7 alloc h[1-7]

Here we see that the cluster is divided into three partitions: , , and .debug work premium

Th partition has a small time limit by design of 10 minutes. It’s purpose (perhaps obviously) is to handle jobs for debugging when you are e debug
first writing your scripts to submit work

The partition is the main partition. The time limit for jobs is 14 days. You can see from the output above that all of the nodes in that work sinfo
partition are currently allocated.

The partition is the paid pseudo-partition to allow for the pre-emption of jobs by paid cluster users. Jobs submitted to the partitiopremium premium
n can pause jobs in the partition to allow for drastically reduced cluster wait times.work

Submitting your first job

Submitting jobs to the cluster requires you to have written a script that defines your workload and metadata about it. Lucky for you, we’ve written
a handy example-creator called . It will copy some examples into your home directory.slurm-make-examples.sh

Run:

[abc1234@ion ~ []]$ slurm-make-examples.sh
** Placing examples in /home/abc1234/slurm-examples-2011-12-09
...
** Done copying to /home/abc1234/slurm-examples-2011-12-09
** Replacing all instances of 'USER' with 'abc1234'.
** Done replacing in /home/abc1234/slurm-examples-2011-12-09

Now take a look at your home directory and change into the newly created examples directory:

[abc1234@ion ~ []]$ ls -alh
drwx------ 106 abc1234 abc1234 36K Dec 9 16:36 .
drwxr-xr-x 5 root root 0 Dec 9 16:28 ..
drwxrwx--- 5 abc1234 abc1234 2.0K Dec 9 16:36 slurm-examples-2011-12-09

[abc1234@ion ~ []]$ cd slurm-examples-2011-12-09/

[abc1234@ion slurm-examples-2011-12-09 []]$ ls -alh
total 192K
drwxrwx--- 5 abc1234 abc1234 2.0K Dec 9 16:36 .
drwx------ 106 abc1234 abc1234 36K Dec 9 16:36 ..
drwxr-x--- 2 abc1234 abc1234 2.0K Dec 9 16:36 example-1-simple-jobs
drwxr-x--- 2 abc1234 abc1234 2.0K Dec 9 16:36 example-2-basic-looping
drwxr-x--- 2 abc1234 abc1234 2.0K Dec 9 16:36 example-3-job-dependency-and-dynamic-node-claiming

There are three examples there. Change directory into the first one and list its contents:

[abc1234@ion slurm-examples-2011-12-09 []]$ cd example-1-simple-jobs/

[abc1234@ion example-1-simple-jobs []]$ ls -alh
total 160K
drwxr-x--- 2 abc1234 abc1234 2.0K Dec 9 16:36 .
drwxrwx--- 5 abc1234 abc1234 2.0K Dec 9 16:36 ..
-rwxrwx--- 1 abc1234 abc1234 1.3K Dec 9 16:36 slurm-mpi.sh
-rwxrwx--- 1 abc1234 abc1234 1.2K Dec 9 16:36 slurm-single-core.sh
-rwxrwx--- 1 abc1234 abc1234 1.3K Dec 9 16:36 slurm-smp.sh

The file we’re going to be working with first is . It is a job file that describes...slurm-single-core.sh SLURM

Metadata about the job we’re going to submit
 The payload of the job; the actual work we want to get done.

Let’s take a look at it. Run the following command, :less slurm-single-core.sh

[abc1234@ion example-1-simple-jobs []]$ less slurm-single-core.sh
#!/bin/bash -l
NOTE the -l flag!
#

This is an example job file for a single core CPU bound program
Note that all of the following statements below that begin
with #SBATCH are actually commands to the SLURM scheduler.
Please copy this file to your home directory and modify it
to suit your needs.
#
If you need any help, please email rc-help@rit.edu
#

Name of the job - You'll probably want to customize this.
#SBATCH -J test

Standard out and Standard Error output files
#SBATCH -o test.output
#SBATCH -e test.output

#SBATCH --mail-user abc1234@rit.edu

notify on state change: BEGIN, END, FAIL or ALL
#SBATCH --mail-type=ALL

Request 5 minutes run time MAX, anything over will be KILLED
#SBATCH -t 0:5:0

Put the job in the "debug" partition and request one core
"debug" is a limited partition. You'll likely want to change
it to "work" once you understand how this all works.
#SBATCH -p debug -n 1

Job memory requirements in MB
#SBATCH --mem=300

#
Your job script goes below this line.
#
echo "(${HOSTNAME}) sleeping for 1 minute to simulate work (ish)"
sleep 60
echo "(${HOSTNAME}) Ahhh, alarm clock!"

You’ll see by the first line, , that this is a bash script. As you might already know, any line in a bash script that begins with a is a #!/bin/bash #
comment and is therefore disregarded when the script is running.

However, in this context, any line that begins with is actually a meta-command to the scheduler that informs it how to #SBATCH SLURM
prioritize, schedule, and place your job.

The last three lines are the ‘payload’ of the job. In this case it just prints out a statement, goes to sleep for 60 seconds (pretending to work) and
then wakes up and prints one last statement. Very important scientific work, don’t you agree?

Let’s give this script a run. We’ll submit it to the SLURM scheduler using the command, but we need one more piece of information before sbatch
we do.

Research Computing divvies out resources to users by way of Qualities-of-Service (or QOSes). If you don’t know what QOS your account is in,
you can run the command. If things are still unclear, you can email to ask, but you are most likely in the or show-my-qos rc-help rit edu@ . rc free
QOS. For each grouping of users, we define two different priority-levels under which you can submit jobs.

Everyone is a member of the free QOS, which lacks core restrictions. You can find your premium QOSes and their core limits with:

[abc1234@ion example-1-simple-jobs []]$ show-my-qos

QOS Name #Cores

foo 10
bar 6

Submit your job with the following command:

[abc1234@ion example-1-simple-jobs []]$ sbatch --qos=free slurm-single-core.sh
Submitted batch job 727

You can now check to see that your job is really running in the debug partition by running :squeue

mailto:rc-help%40rit.edu

[abc1234@ion example-1-simple-jobs []]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 727 debug test abc1234 R 0:27 1 einstein

Now that our script is running, we should be able to see its output. Check for it with :ls -alh

[abc1234@ion example-1-simple-jobs []]$ ls -alh
total 192K
drwxr-x--- 2 abc1234 abc1234 2.0K Dec 9 17:08 .
drwxrwx--- 5 abc1234 abc1234 2.0K Dec 9 16:36 ..
-rwxrwx--- 1 abc1234 abc1234 1.3K Dec 9 16:36 slurm-mpi.sh
-rwxrwx--- 1 abc1234 abc1234 1.2K Dec 9 16:36 slurm-single-core.sh
-rwxrwx--- 1 abc1234 abc1234 1.3K Dec 9 16:36 slurm-smp.sh
-rw-rw---- 1 abc1234 abc1234 86 Dec 9 17:09 test.output

And check its contents with the command:cat

[abc1234@ion example-1-simple-jobs []]$ cat test.output
(einstein) sleeping for 1 minute to simulate work (ish)
(einstein) Ahhh, alarm clock!

Neat! This is the output that would normally be printed to the screen, printed instead to the contents of the output file we specified in our SLURM
job script . Our code was executed on the remote compute node called and its results were redirected over NFS slurm-single-core.sh einstein
back to us.

If you’ve been able to follow the above steps and successfully submit and monitor a job, you might want to check out Using the Cluster –
.Advanced Usage

https://wiki.rit.edu/pages/viewpage.action?pageId=101517723
https://wiki.rit.edu/pages/viewpage.action?pageId=101517723

	Using the Cluster – Introduction

